Gaussian process emulation to accelerate parameter estimation in a mechanical model of the left ventricle: a critical step towards clinical end-user relevance.

阅读:4
作者:Noè Umberto, Lazarus Alan, Gao Hao, Davies Vinny, Macdonald Benn, Mangion Kenneth, Berry Colin, Luo Xiaoyu, Husmeier Dirk
In recent years, we have witnessed substantial advances in the mathematical modelling of the biomechanical processes underlying the dynamics of the cardiac soft-tissue. Gao et al. (Gao et al. 2017 J. R. Soc. Interface 14, 20170203 ( doi:10.1098/rsif.2017.0203 )) demonstrated that the parameters underlying the biomechanical model have diagnostic value for prognosticating the risk of myocardial infarction. However, the computational costs of parameter estimation are prohibitive when the goal lies in building real-time clinical decision support systems. This is due to the need to repeatedly solve the mathematical equations numerically using finite-element discretization during an iterative optimization routine. The present article presents a method for accelerating the inference of the constitutive parameters by using statistical emulation with Gaussian processes. We demonstrate how the computational costs can be reduced by about three orders of magnitude, with hardly any loss in accuracy, and we assess various alternative techniques in a comparative evaluation study based on simulated data obtained by solving the left ventricular model with the finite-element method, and real magnetic resonance images data for a human volunteer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。