Penalized mediation models for multivariate data.

阅读:4
作者:Schaid Daniel J, Dikilitas Ozan, Sinnwell Jason P, Kullo Iftikhar J
Statistical methods to integrate multiple layers of data, from exposures to intermediate traits to outcome variables, are needed to guide interpretation of complex data sets for which variables are likely contributing in a causal pathway from exposure to outcome. Statistical mediation analysis based on structural equation models provide a general modeling framework, yet they can be difficult to apply to high-dimensional data and they are not automated to select the best fitting model. To overcome these limitations, we developed novel algorithms and software to simultaneously evaluate multiple exposure variables, multiple intermediate traits, and multiple outcome variables. Our penalized mediation models are computationally efficient and simulations demonstrate that they produce reliable results for large data sets. Application of our methods to a study of vascular disease demonstrates their utility to identify novel direct effects of single-nucleotide polymorphisms (SNPs) on coronary heart disease and peripheral artery disease, while disentangling the effects of SNPs on the intermediate risk factors including lipids, cigarette smoking, systolic blood pressure, and type 2 diabetes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。