[Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction].

阅读:4
作者:Yu J, Zhang K, Jin S, Su Z, Xu X, Zhang H
OBJECTIVE: To propose a framework that combines sinogram interpolation with unsupervised image-to-image translation (UNIT) network to correct metal artifacts in CT images. METHODS: The initially corrected CT image and the prior image without artifacts, which were considered as different elements in two different domains, were input into the image transformation network to obtain the corrected image. Verification experiments were carried out to assess the effectiveness of the proposed method using the simulation data, and PSNR and SSIM were calculated for quantitative evaluation of the performance of the method. RESULTS: The experiment using the simulation data showed that the proposed method achieved better results for improving image quality as compared with other methods, and the corrected images preserved more details and structures. Compared with ADN algorithm, the proposed algorithm improved the PSNR and SSIM by 2.4449 and 0.0023 when the metal was small, by 5.9942 and 8.8388 for images with large metals, and by 8.8388 and 0.0130 when both small and large metals were present, respectively. CONCLUSION: The proposed method for metal artifact correction can effectively remove metal artifacts, improve image quality, and preserve more details and structures on CT images.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。