Intrinsic backbone conformational preferences of different amino acids are important for understanding the local structure of unfolded protein chains. Recent evidence suggests α-structure is relatively minor among three major backbone conformations for unfolded proteins. The α-helices are the dominant structures in many proteins. For these proteins, how could the α-structures occur from the least in unfolded to the most in folded states? Populations of the minor α-conformation in model peptides provide vital information. Reliable determination of populations of the α-conformers in these peptides that exist in multiple equilibriums of different conformations remains a challenge. Combined analyses on data from AcGXPNH2 and AcGXGNH2 peptides allow us to derive the populations of PII, β and α in AcGXGNH2. Our results show that on average residue X in AcGXGNH2 adopt PII, β, and α 44.7%, 44.5% and 10.8% of time, respectively. The contents of α-conformations for different amino acids define an α-helix nucleation propensity scale. With derived PII, β and α-contents, we can construct a free energy-conformation diagram on each AcGXGNH2 in aqueous solution for the three major backbone conformations. Our results would have broad implications on early-stage events of protein folding.
Populations of the Minor α-Conformation in AcGXGNH2 and the α-Helical Nucleation Propensities.
阅读:6
作者:Zhou Yanjun, He Liu, Zhang Wenwen, Hu Jingjing, Shi Zhengshuang
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2016 | 起止号: | 2016 Jun 3; 6:27197 |
| doi: | 10.1038/srep27197 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
