A high resolution dataset is one of the prerequisites for tea chrysanthemum detection with deep learning algorithms. This is crucial for further developing a selective chrysanthemum harvesting robot. However, generating high resolution datasets of the tea chrysanthemum with complex unstructured environments is a challenge. In this context, we propose a novel tea chrysanthemum - generative adversarial network (TC-GAN) that attempts to deal with this challenge. First, we designed a non-linear mapping network for untangling the features of the underlying code. Then, a customized regularization method was used to provide fine-grained control over the image details. Finally, a gradient diversion design with multi-scale feature extraction capability was adopted to optimize the training process. The proposed TC-GAN was compared with 12 state-of-the-art generative adversarial networks, showing that an optimal average precision (AP) of 90.09% was achieved with the generated images (512 Ã 512) on the developed TC-YOLO object detection model under the NVIDIA Tesla P100 GPU environment. Moreover, the detection model was deployed into the embedded NVIDIA Jetson TX2 platform with 0.1 s inference time, and this edge computing device could be further developed into a perception system for selective chrysanthemum picking robots in the future.
Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing.
阅读:3
作者:Qi Chao, Gao Junfeng, Chen Kunjie, Shu Lei, Pearson Simon
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2022 | 起止号: | 2022 Apr 7; 13:850606 |
| doi: | 10.3389/fpls.2022.850606 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
