Additive quantile regression for clustered data with an application to children's physical activity.

阅读:4
作者:Geraci, Marco
Additive models are flexible regression tools that handle linear as well as non-linear terms. The latter are typically modelled via smoothing splines. Additive mixed models extend additive models to include random terms when the data are sampled according to cluster designs (e.g. longitudinal).These models find applications in the study of phenomena like growth, certain disease mechanisms and energy expenditure in humans, when repeated measurements are available. We propose a novel additive mixed model for quantile regression. Our methods are motivated by an application to physical activity based on a data set with more than half a million accelerometer measurements in children of the UK Millennium Cohort Study. In a simulation study, we assess the proposed methods against existing alternatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。