ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in Vibrio cholerae.

阅读:4
作者:Klancher Catherine A, Yamamoto Shouji, Dalia Triana N, Dalia Ankur B
Two-component signal transduction systems (TCSs) represent a major mechanism that bacteria use to sense and respond to their environment. Prototypical TCSs are composed of a membrane-embedded histidine kinase, which senses an environmental stimulus and subsequently phosphorylates a cognate partner protein called a response regulator that regulates gene expression in a phosphorylation-dependent manner. Vibrio cholerae uses the hybrid histidine kinase ChiS to activate the expression of the chitin utilization program, which is critical for the survival of this facultative pathogen in its aquatic reservoir. A cognate response regulator for ChiS has not been identified and the mechanism of ChiS-dependent signal transduction remains unclear. Here, we show that ChiS is a noncanonical membrane-embedded one-component system that can both sense chitin and directly regulate gene expression via a cryptic DNA binding domain. Unlike prototypical TCSs, we find that ChiS DNA binding is diminished, rather than stimulated, by phosphorylation. Finally, we provide evidence that ChiS likely activates gene expression by directly recruiting RNA polymerase. This work addresses the mechanism of action for a major transcription factor in V. cholerae and highlights the versatility of signal transduction systems in bacterial species.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。