Central administration of corticotropin-releasing hormone (CRH) is known to enhance locomotion across a wide range of vertebrates, including the roughskin newt, Taricha granulosa. The present study aimed to identify the CRH effects on locomotor-controlling medullary neurons that underlie the peptide's behavioral stimulating actions. Single neurons were recorded from the rostral medullary reticular formation before and after intraventricular infusion of CRH in freely behaving newts and newts paralyzed with a myoneural blocking agent. In behaving newts, most medullary neurons showed increased firing 3-23 min after CRH infusion. Decreases in firing were less common. Of particular importance was the finding that in behaving newts, medullary neurons showed a cyclic firing pattern that was strongly associated with an increase in the incidence of walking bouts, an effect blocked by pretreatment with the CRH antagonist, alpha-helical CRH and not seen following vehicle administration. In contrast, the majority of medullary neurons sampled in immobilized newts lacked temporal cyclicity in their firing patterns following intraventricular infusion of CRH. That is, there was no evidence for a fictive locomotor activity pattern. Our results indicate that the actual expression of locomotion is a critical factor in regulating the behavior-activating effects of CRH and underscore the importance of using an awake, unrestrained animal for analysis of a hormone's neurobehavioral actions.
Brainstem neuronal and behavioral activation by corticotropin-releasing hormone depend on the behavioral state of the animal.
阅读:3
作者:Hubbard Catherine S, Rose James D
| 期刊: | Hormones and Behavior | 影响因子: | 2.400 |
| 时间: | 2012 | 起止号: | 2012 Jan;61(1):121-33 |
| doi: | 10.1016/j.yhbeh.2011.11.004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
