Botulinum neurotoxins (BoNTs) internalize into nerve terminals and block the release of neurotransmitters into the synapse. BoNTs are widely used as a therapeutic agent for treatment of movement disorders and recently gained more attention as a biological weapon. Consequently, there is strong interest to develop a cell-based assay platform to screen the toxicity and bioactivity of the BoNTs. In this study, we present an in vitro screening assay for BoNT/A based on differentiated human embryonal carcinoma stem (NT2) cells. The human NT2 cells fully differentiated into mature neurons that display immunoreactivity to cytoskeletal markers (βIII-tubulin and MAP2) and presynaptic proteins (synapsin and synaptotagmin I). We showed that the human NT2 cells undergo a process of exo-endocytotic synaptic vesicle recycling upon depolarization with high K(+) buffer. By employing an antibody directed against light chain of BoNT/A, we detected internalized toxin as a punctate staining along the neurites of the NT2 neurons. Using well-established methods of synaptic vesicle exocytosis assay (luminal synaptotagmin I and FM1-43 imaging) we show that pre-incubation with BoNT/A resulted in a blockade of vesicle release from human NT2 neurons in a dose-dependent manner. Moreover, this blocking effect of BoNT/A was abolished by pre-adsorbing the toxin with neutralizing antibody. In a proof of principle, we demonstrate that our cell culture assay for vesicle release is sensitive to BoNT/A and the activity of BoNT/A can be blocked by specific neutralizing antibodies. Overall our data suggest that human NT2 neurons are suitable for large scale screening of botulinum bioactivity.
Neurotransmitter vesicle release from human model neurons (NT2) is sensitive to botulinum toxin A.
阅读:4
作者:Tegenge Million Adane, Böhnel Helge, Gessler Frank, Bicker Gerd
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2012 | 起止号: | 2012 Aug;32(6):1021-9 |
| doi: | 10.1007/s10571-012-9818-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
