Controlling the Overfitting of Heritability in Genomic Selection through Cross Validation.

阅读:4
作者:Jia, Zhenyu
In genomic selection (GS), all the markers across the entire genome are used to conduct marker-assisted selection such that each quantitative trait locus of complex trait is in linkage disequilibrium with at least one marker. Although GS improves estimated breeding values and genetic gain, in most GS models genetic variance is estimated from training samples with many trait-irrelevant markers, which leads to severe overfitting in the calculation of trait heritability. In this study, we demonstrated overfitting heritability due to the inclusion of trait-irrelevant markers using a series of simulations, and such overfitting can be effectively controlled by cross validation experiment. In the proposed method, the genetic variance is simply the variance of the genetic values predicted through cross validation, the residual variance is the variance of the differences between the observed phenotypic values and the predicted genetic values, and these two resultant variance components are used for calculating the unbiased heritability. We also demonstrated that the heritability calculated through cross validation is equivalent to trait predictability, which objectively reflects the applicability of the GS models. The proposed method can be implemented with the Mixed Procedure in SAS or with our R package "GSMX" which is publically available at https://cran.r-project.org/web/packages/GSMX/index.html .

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。