In genomic selection (GS), all the markers across the entire genome are used to conduct marker-assisted selection such that each quantitative trait locus of complex trait is in linkage disequilibrium with at least one marker. Although GS improves estimated breeding values and genetic gain, in most GS models genetic variance is estimated from training samples with many trait-irrelevant markers, which leads to severe overfitting in the calculation of trait heritability. In this study, we demonstrated overfitting heritability due to the inclusion of trait-irrelevant markers using a series of simulations, and such overfitting can be effectively controlled by cross validation experiment. In the proposed method, the genetic variance is simply the variance of the genetic values predicted through cross validation, the residual variance is the variance of the differences between the observed phenotypic values and the predicted genetic values, and these two resultant variance components are used for calculating the unbiased heritability. We also demonstrated that the heritability calculated through cross validation is equivalent to trait predictability, which objectively reflects the applicability of the GS models. The proposed method can be implemented with the Mixed Procedure in SAS or with our R package "GSMX" which is publically available at https://cran.r-project.org/web/packages/GSMX/index.html .
Controlling the Overfitting of Heritability in Genomic Selection through Cross Validation.
阅读:8
作者:Jia, Zhenyu
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2017 | 起止号: | 2017 Oct 20; 7(1):13678 |
| doi: | 10.1038/s41598-017-14070-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
