We demonstrate three-dimensional (3D) super-resolution microscopy in whole fixed cells using photoactivated localization microscopy (PALM). The use of the bright, genetically expressed fluorescent marker photoactivatable monomeric (m)Cherry (PA-mCherry1) in combination with near diffraction-limited confinement of photoactivation using two-photon illumination and 3D localization methods allowed us to investigate a variety of cellular structures at <50 nm lateral and <100 nm axial resolution. Compared to existing methods, we have substantially reduced excitation and bleaching of unlocalized markers, which allows us to use 3D PALM imaging with high localization density in thick structures. Our 3D localization algorithms, which are based on cross-correlation, do not rely on idealized noise models or specific optical configurations. This allows instrument design to be flexible. By generating appropriate fusion constructs and expressing them in Cos7 cells, we could image invaginations of the nuclear membrane, vimentin fibrils, the mitochondrial network and the endoplasmic reticulum at depths of greater than 8 μm.
Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes.
阅读:9
作者:York Andrew G, Ghitani Alireza, Vaziri Alipasha, Davidson Michael W, Shroff Hari
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2011 | 起止号: | 2011 Apr;8(4):327-33 |
| doi: | 10.1038/nmeth.1571 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
