Learning patterns of HIV-1 resistance to broadly neutralizing antibodies with reduced subtype bias using multi-task learning.

阅读:6
作者:Igiraneza Aime Bienfait, Zacharopoulou Panagiota, Hinch Robert, Wymant Chris, Abeler-Dörner Lucie, Frater John, Fraser Christophe
The ability to predict HIV-1 resistance to broadly neutralizing antibodies (bnAbs) will increase bnAb therapeutic benefits. Machine learning is a powerful approach for such prediction. One challenge is that some HIV-1 subtypes in currently available training datasets are underrepresented, which likely affects models' generalizability across subtypes. A second challenge is that combinations of bnAbs are required to avoid the inevitable resistance to a single bnAb, and computationally determining optimal combinations of bnAbs is an unsolved problem. Recently, machine learning models trained using resistance outcomes for multiple antibodies at once, a strategy called multi-task learning (MTL), have been shown to improve predictions. We develop a new model and show that, beyond the boost in performance, MTL also helps address the previous two challenges. Specifically, we demonstrate empirically that MTL can mitigate bias from underrepresented subtypes, and that MTL allows the model to learn patterns of co-resistance to combinations of antibodies, thus providing tools to predict antibodies' epitopes and to potentially select optimal bnAb combinations. Our analyses, publicly available at https://github.com/iaime/LBUM, can be adapted to other infectious diseases that are treated with antibody therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。