Task Cortical Connectivity Reveals Different Network Reorganizations between Mild Stroke Patients with Cortical and Subcortical Lesions.

阅读:4
作者:Cai Jiaye, Xu Mengru, Cai Huaying, Jiang Yun, Zheng Xu, Sun Hongru, Sun Yu, Sun Yi
Accumulating efforts have been made to investigate cognitive impairment in stroke patients, but little has been focused on mild stroke. Research on the impact of mild stroke and different lesion locations on cognitive impairment is still limited. To investigate the underlying mechanisms of cognitive dysfunction in mild stroke at different lesion locations, electroencephalograms (EEGs) were recorded in three groups (40 patients with cortical stroke (CS), 40 patients with subcortical stroke (SS), and 40 healthy controls (HC)) during a visual oddball task. Power envelope connectivity (PEC) was constructed based on EEG source signals, followed by graph theory analysis to quantitatively assess functional brain network properties. A classification framework was further applied to explore the feasibility of PEC in the identification of mild stroke. The results showed worse behavioral performance in the patient groups, and PECs with significant differences among three groups showed complex distribution patterns in frequency bands and the cortex. In the delta band, the global efficiency was significantly higher in HC than in CS (p = 0.011), while local efficiency was significantly increased in SS than in CS (p = 0.038). In the beta band, the small-worldness was significantly increased in HC compared to CS (p = 0.004). Moreover, the satisfactory classification results (76.25% in HC vs. CS, and 80.00% in HC vs. SS) validate the potential of PECs as a biomarker in the detection of mild stroke. Our findings offer some new quantitative insights into the complex mechanisms of cognitive impairment in mild stroke at different lesion locations, which may facilitate post-stroke cognitive rehabilitation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。