Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia.

阅读:3
作者:Schilling Tom, Lehmann Frank, Rückert Berit, Eder Claudia
Activation of microglial cells, the resident macrophages of the brain, occurs rapidly following brain injury. De-ramification, i.e. transformation from ramified into amoeboid morphology is one of the earliest manifestations of microglial activation. In the present study, we identified the physiological mechanisms underlying microglial de-ramification induced by lysophosphatidylcholine (LPC). Patch-clamp experiments revealed activation of non-selective cation currents and Ca(2+)-dependent K(+) currents by extracellular LPC. LPC-activated non-selective cation channels were permeable for monovalent and divalent cations. They were inhibited by Gd(3+), La(3+), Zn(2+) and Grammostola spatulata venom, but were unaffected by diltiazem, LOE908MS, amiloride and DIDS. Ca(2+) influx through non-selective cation channels caused sustained increases in intracellular Ca(2+) concentration. These Ca(2+) increases were sufficient to elicit charybdotoxin-sensitive Ca(2+)-dependent K(+) currents. However, increased [Ca(2+)](i) was not required for LPC-induced morphological changes. In LPC-stimulated microglial cells, non-selective cation currents caused transient membrane depolarization, which was followed by sustained membrane hyperpolarization induced by Ca(2+)-dependent K(+) currents. Furthermore, LPC elicited K(+) efflux by stimulating electroneutral K(+)-Cl(-) cotransporters, which were inhibited by furosemide and DIOA. LPC-induced microglial de-ramification was prevented by simultaneous inhibition of non-selective cation channels and K(+)-Cl(-) cotransporters, suggesting their functional importance for microglial activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。