Interpretable Design of Reservoir Computing Networks Using Realization Theory.

阅读:4
作者:Miao Wei, Narayanan Vignesh, Li Jr-Shin
The reservoir computing networks (RCNs) have been successfully employed as a tool in learning and complex decision-making tasks. Despite their efficiency and low training cost, practical applications of RCNs rely heavily on empirical design. In this article, we develop an algorithm to design RCNs using the realization theory of linear dynamical systems. In particular, we introduce the notion of α -stable realization and provide an efficient approach to prune the size of a linear RCN without deteriorating the training accuracy. Furthermore, we derive a necessary and sufficient condition on the irreducibility of the number of hidden nodes in linear RCNs based on the concepts of controllability and observability from systems theory. Leveraging the linear RCN design, we provide a tractable procedure to realize RCNs with nonlinear activation functions. We present numerical experiments on forecasting time-delay systems and chaotic systems to validate the proposed RCN design methods and demonstrate their efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。