Data and model considerations for estimating time-varying functional connectivity in fMRI.

阅读:4
作者:Ahrends C, Stevner A, Pervaiz U, Kringelbach M L, Vuust P, Woolrich M W, Vidaurre D
Functional connectivity (FC) in the brain has been shown to exhibit subtle but reliable modulations within a session. One way of estimating time-varying FC is by using state-based models that describe fMRI time series as temporal sequences of states, each with an associated, characteristic pattern of FC. However, the estimation of these models from data sometimes fails to capture changes in a meaningful way, such that the model estimation assigns entire sessions (or the largest part of them) to a single state, therefore failing to capture within-session state modulations effectively; we refer to this phenomenon as the model becoming static, or model stasis. Here, we aim to quantify how the nature of the data and the choice of model parameters affect the model's ability to detect temporal changes in FC using both simulated fMRI time courses and resting state fMRI data. We show that large between-subject FC differences can overwhelm subtler within-session modulations, causing the model to become static. Further, the choice of parcellation can also affect the model's ability to detect temporal changes. We finally show that the model often becomes static when the number of free parameters per state that need to be estimated is high and the number of observations available for this estimation is low in comparison. Based on these findings, we derive a set of practical recommendations for time-varying FC studies, in terms of preprocessing, parcellation and complexity of the model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。