A robust mean and variance test with application to high-dimensional phenotypes.

阅读:5
作者:Staley James R, Windmeijer Frank, Suderman Matthew, Lyon Matthew S, Davey Smith George, Tilling Kate
Most studies of continuous health-related outcomes examine differences in mean levels (location) of the outcome by exposure. However, identifying effects on the variability (scale) of an outcome, and combining tests of mean and variability (location-and-scale), could provide additional insights into biological mechanisms. A joint test could improve power for studies of high-dimensional phenotypes, such as epigenome-wide association studies of DNA methylation at CpG sites. One possible cause of heterogeneity of variance is a variable interacting with exposure in its effect on outcome, so a joint test of mean and variability could help in the identification of effect modifiers. Here, we review a scale test, based on the Brown-Forsythe test, for analysing variability of a continuous outcome with respect to both categorical and continuous exposures, and develop a novel joint location-and-scale score (JLSsc) test. These tests were compared to alternatives in simulations and used to test associations of mean and variability of DNA methylation with gender and gestational age using data from the Accessible Resource for Integrated Epigenomics Studies (ARIES). In simulations, the Brown-Forsythe and JLSsc tests retained correct type I error rates when the outcome was not normally distributed in contrast to the other approaches tested which all had inflated type I error rates. These tests also identified > 7500 CpG sites for which either mean or variability in cord blood methylation differed according to gender or gestational age. The Brown-Forsythe test and JLSsc are robust tests that can be used to detect associations not solely driven by a mean effect.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。