It is estimated that approximately 10% of healthcare system expenditures are wasted due to medical fraud and abuse. In the medical area, the combination of thousands of drugs and diseases make the supervision of health care more difficult. To quantify the disease-drug relationship into relationship score and do anomaly detection based on this relationship score and other features, we proposed a neural network with fully connected layers and sparse convolution. We introduced a focal-loss function to adapt to the data imbalance and a relative probability score to measure the model's performance. As our model performs much better than previous ones, it can well alleviate analysts' work.
Medical Fraud and Abuse Detection System Based on Machine Learning.
阅读:3
作者:Zhang Conghai, Xiao Xinyao, Wu Chao
| 期刊: | International Journal of Environmental Research and Public Health | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Oct 5; 17(19):7265 |
| doi: | 10.3390/ijerph17197265 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
