Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure-Potency Fingerprint.

阅读:9
作者:Janela Tiago, Takeuchi Kosuke, Bajorath Jürgen
Prediction of the potency of bioactive compounds generally relies on linear or nonlinear quantitative structure-activity relationship (QSAR) models. Nonlinear models are generated using machine learning methods. We introduce a novel approach for potency prediction that depends on a newly designed molecular fingerprint (FP) representation. This structure-potency fingerprint (SPFP) combines different modules accounting for the structural features of active compounds and their potency values in a single bit string, hence unifying structure and potency representation. This encoding enables the derivation of a conditional variational autoencoder (CVAE) using SPFPs of training compounds and apply the model to predict the SPFP potency module of test compounds using only their structure module as input. The SPFP-CVAE approach correctly predicts the potency values of compounds belonging to different activity classes with an accuracy comparable to support vector regression (SVR), representing the state-of-the-art in the field. In addition, highly potent compounds are predicted with very similar accuracy as SVR and deep neural networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。