BivRec: an R package for the nonparametric and semiparametric analysis of bivariate alternating recurrent events.

阅读:3
作者:Castro-Pearson Sandra, Sur Aparajita, Lee Chi Hyun, Huang Chiung-Yu, Luo Xianghua
BACKGROUND: Bivariate alternating recurrent event data can arise in longitudinal studies where patients with chronic diseases go through two states that occur repeatedly, e.g., care periods and break periods. However, there was no statistical software that provided tools for the analysis of such data. To meet this software need, we developed BivRec, a package for R that contains a set of tools for exploratory, nonparametric and semiparametric regression analysis of bivariate alternating recurrent events. RESULTS: The BivRec package provides functions for nonparametric estimations for the joint distribution of bivariate gap times (bivrecNP) and semiparametric regression methods for evaluating covariate effects on the two types of gap times under the accelerated failure time model framework (bivrecReg). The package also provides exploratory data analysis tools such as a visualization of the gap times by groups. We utilize a subset of the South Verona Psychiatric Case Register (PCR) data to illustrate the use of the BivRec package for the reviewed methods. CONCLUSIONS: We demonstrate BivRec's capability for data visualization, nonparametric and regression based analysis, as well as data simulation. The package has default methods with satisfactory performance despite the complexity of calculations and fills a gap in software for statistical analysis of bivariate alternating recurrent events. BivRec is accessible under the GPL-3 General Public License through CRAN, facilitating its installation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。