VEGF Trap(R1R2) suppresses experimental corneal angiogenesis

VEGF Trap(R1R2)抑制实验性角膜血管生成

阅读:8
作者:Hailton B Oliveira, Tohru Sakimoto, Joel A D Javier, Dimitri T Azar, Stanley J Wiegand, Sandeep Jain, Jin-Hong Chang

Conclusions

Corneal keratocytes express VEGF after bFGF stimulation and bFGF-induced corneal NV is blocked by intraperitoneal VEGF TrapR1R2 administration. Systemic administration of VEGF TrapR1R2 may have potential therapeutic applications in the management of corneal NV.

Methods

Control pellets or pellets containing 80 ng bFGF were surgically implanted into wild-type C57BL/6 and VEGF-LacZ mouse corneas. The corneas were photographed, harvested, and the percentage of corneal NV was calculated. The harvested corneas were evaluated for VEGF expression. VEGF-LacZ mice received tail vein injections of an endothelial-specific lectin after pellet implantation to determine the temporal and spatial relationship between VEGF expression and corneal NV. Intraperitoneal injections of VEGF TrapR1R2 or a human IgG Fc domain control protein were administered, and bFGF pellet-induced corneal NV was evaluated.

Purpose

To determine the effect of vascular endothelial growth factor (VEGF) TrapR1R2 on bFGF-induced experimental corneal neovascularization (NV).

Results

NV of the corneal stroma began on day 4 and was sustained through day 21 following bFGF pellet implantation. Progression of vascular endothelial cells correlated with increased VEGF-LacZ expression. Western blot analysis showed increased VEGF expression in the corneal NV zone. Following bFGF pellet implantation, the area of corneal NV in untreated controls was 1.05+/-0.12 mm2 and 1.53+/-0.27 mm2 at days 4 and 7, respectively. This was significantly greater than that of mice treated with VEGF Trap (0.24+/-0.11 mm2 and 0.35+/-0.16 mm2 at days 4 and 7, respectively; p<0.05). Conclusions: Corneal keratocytes express VEGF after bFGF stimulation and bFGF-induced corneal NV is blocked by intraperitoneal VEGF TrapR1R2 administration. Systemic administration of VEGF TrapR1R2 may have potential therapeutic applications in the management of corneal NV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。