Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations.

阅读:4
作者:Luo Yang, Li Xinyi, Wang Xin, Gazal Steven, Mercader Josep Maria, Neale Benjamin M, Florez Jose C, Auton Adam, Price Alkes L, Finucane Hilary K, Raychaudhuri Soumya
It is important to study the genetics of complex traits in diverse populations. Here, we introduce covariate-adjusted linkage disequilibrium (LD) score regression (cov-LDSC), a method to estimate SNP-heritability (${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}})$ and its enrichment in homogenous and admixed populations with summary statistics and in-sample LD estimates. In-sample LD can be estimated from a subset of the genome-wide association studies samples, allowing our method to be applied efficiently to very large cohorts. In simulations, we show that unadjusted LDSC underestimates ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ by 10-60% in admixed populations; in contrast, cov-LDSC is robustly accurate. We apply cov-LDSC to genotyping data from 8124 individuals, mostly of admixed ancestry, from the Slim Initiative in Genomic Medicine for the Americas study, and to approximately 161 000 Latino-ancestry individuals, 47 000 African American-ancestry individuals and 135 000 European-ancestry individuals, as classified by 23andMe. We estimate ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and detect heritability enrichment in three quantitative and five dichotomous phenotypes, making this, to our knowledge, the most comprehensive heritability-based analysis of admixed individuals to date. Most traits have high concordance of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and consistent tissue-specific heritability enrichment among different populations. However, for age at menarche, we observe population-specific heritability estimates of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$. We observe consistent patterns of tissue-specific heritability enrichment across populations; for example, in the limbic system for BMI, the per-standardized-annotation effect size $ \tau $* is 0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in the Latino-, African American- and European-ancestry populations, respectively. Our approach is a powerful way to analyze genetic data for complex traits from admixed populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。