Estimation of low-level components lost through chromatographic separations with finite detection limits.

阅读:3
作者:Devitt Nicole M, Davis Joe M, Schure Mark R
The search for biomarkers allowing the assessment of disease by early diagnosis is facilitated by liquid chromatography. However, it is not clear how many components are lost due to being present in concentrations below the detection limit and/or being obscured by chromatographic peak overlap. First, we extend the study of missing components undertaken by Enke and Nagels, who employed the log-normal probability density function (pdf) for the distribution of signal intensities (and concentrations) of three mixtures. The Weibull and exponential pdfs, which have a higher probability of small-concentration components than the log-normal pdf, are also investigated. Results show that assessments of the loss of low-intensity signals by curve fitting are ambiguous. Next, we simulate synthetic chromatograms to compare the loss of peaks from superposition (overlap) with neighboring peaks to the loss arising from lying below the limit of detection (LOD) imposed by a finite signal-to-noise ratio (SNR). The simulations are made using amplitude pdfs based on the Enke-Nagels data as functions of relative column efficiency, i.e., saturation, and SNR. Results show that at the highest efficiencies, the lowest-amplitude peaks are lost below the LOD. However, at small and medium efficiencies, peak overlap is the dominant loss mechanism, suggesting that low-level components will not be found easily in liquid chromatography with single channel detectors regardless of SNR. A simple treatment shows that a multichannel detector, e.g., a mass spectrometer, is necessary to expose more low-level components.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。