By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N-H(E){D(Z)} and 15N-H(Z){D(E)} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N-H(E){D(Z)} isotopomers of side-chain amides are as significant as on backbone amides.
TROSY of side-chain amides in large proteins.
阅读:3
作者:Liu Aizhuo, Yao Lishan, Li Yue, Yan Honggao
| 期刊: | Journal of Magnetic Resonance | 影响因子: | 1.900 |
| 时间: | 2007 | 起止号: | 2007 Jun;186(2):319-26 |
| doi: | 10.1016/j.jmr.2007.02.008 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
