Advancements in somatic cell gene targeting have been slow due to the finite lifespan of somatic cells and the overall inefficiency of homologous recombination. The rate of homologous recombination is determined by mechanisms of DNA repair, and by the balance between homologous recombination (HR) and non-homologous end joining (NHEJ). A plasmid-to-plasmid, extra chromosomal recombination system was used to study the effects of the manipulation of molecules involved in NHEJ (Mre11, Ku70/80, and p53) on HR/NHEJ ratios. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. While a mutant Mre11 and an anti-Ku aptamer did not significantly affect the rate of NHEJ or HR, transient expression of a p53 mutant increased overall HR/NHEJ by 2.5 fold. However, expression of the mutant p53 resulted in increased aneuploidy of the cultured cells. Additionally, we found no relationship between telomerase expression and changes in HR/NHEJ. In contrast, cell synchrony by thymidine incorporation did not induce chromosomal abnormalities, and increased the ratio of HR/NHEJ 5-fold by reducing the overall rate of NHEJ. Overall our results show that attempts at reducing NHEJ by use of Mre11 or anti-Ku aptamers were unsuccessful. Cell synchrony via thymidine incorporation, however, does increase the ratio of HR/NHEJ and this indicates that this approach may be of use to facilitate targeting in somatic cells by reducing the numbers of colonies that need to be analyzed before a HR is identified.
Enhancement of extra chromosomal recombination in somatic cells by affecting the ratio of homologous recombination (HR) to non-homologous end joining (NHEJ).
阅读:4
作者:Zaunbrecher Gretchen M, Dunne Patrick W, Mir Bashir, Breen Matthew, Piedrahita Jorge A
| 期刊: | Animal Biotechnology | 影响因子: | 1.800 |
| 时间: | 2008 | 起止号: | 2008;19(1):6-21 |
| doi: | 10.1080/10495390701670099 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
