Developing Bioengineered 3D-Printed Composite Scaffolds with Antimicrobial Potential for Bone Tissue Regeneration.

阅读:13
作者:Trifan Andreea, Liciu Eduard, Busuioc Cristina, Stancu Izabela-Cristina, Banciu Adela, Nicolae Carmen, Dragomir Mihai, Cristea Doru-Daniel, Sabău Rosina-Elena, Nițulescu David-Andrei, Paraschiv Alexandru
This research activity proposes to produce composite hydrogel-bioactive glass. The primary purpose of this research is to develop and optimize 3D-printed scaffolds using doped bioglass, aimed at enhancing bone regeneration in bone defects. The bioglass, a bioactive material known for its bone-bonding ability (SiO(2)-P(2)O(5)-CaO-Na(2)O), co-doped with europium and silver was synthesized and doped to improve its biological properties. This doped bioglass was then combined with a biocompatible hydrogel, chosen for its adequate cellular response and printability. The composite material was printed to form a scaffold, providing a structure that not only supports the damaged bone but also encourages osteogenesis. A variety of methods were employed to assess the rheological, compositional, and morphological characteristics of the samples: Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Additionally, simulated body fluid (SBF) immersion for bioactivity monitoring and immunocytochemistry for cell viability were used to evaluate the biological response of the scaffolds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。