MOTIVATION: Association studies have been widely used to search for associations between common genetic variants observations and a given phenotype. However, it is now generally accepted that genes and environment must be examined jointly when estimating phenotypic variance. In this work we consider two types of biological markers: genotypic markers, which characterize an observation in terms of inherited genetic information, and metagenomic marker which are related to the environment. Both types of markers are available in their millions and can be used to characterize any observation uniquely. OBJECTIVE: Our focus is on detecting interactions between groups of genetic and metagenomic markers in order to gain a better understanding of the complex relationship between environment and genome in the expression of a given phenotype. CONTRIBUTIONS: We propose a novel approach for efficiently detecting interactions between complementary datasets in a high-dimensional setting with a reduced computational cost. The method, named SICOMORE, reduces the dimension of the search space by selecting a subset of supervariables in the two complementary datasets. These supervariables are given by a weighted group structure defined on sets of variables at different scales. A Lasso selection is then applied on each type of supervariable to obtain a subset of potential interactions that will be explored via linear model testing. RESULTS: We compare SICOMORE with other approaches in simulations, with varying sample sizes, noise, and numbers of true interactions. SICOMORE exhibits convincing results in terms of recall, as well as competitive performances with respect to running time. The method is also used to detect interaction between genomic markers in Medicago truncatula and metagenomic markers in its rhizosphere bacterial community. SOFTWARE AVAILABILITY: An R package is available [4], along with its documentation and associated scripts, allowing the reader to reproduce the results presented in the paper.
Fast computation of genome-metagenome interaction effects.
阅读:14
作者:Guinot Florent, Szafranski Marie, Chiquet Julien, Zancarini Anouk, Le Signor Christine, Mougel Christophe, Ambroise Christophe
| 期刊: | Algorithms for Molecular Biology | 影响因子: | 1.700 |
| 时间: | 2020 | 起止号: | 2020 Jul 1; 15:13 |
| doi: | 10.1186/s13015-020-00173-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
