Previous studies have suggested that agonists may increase functionally perfused capillary volume by modulation of blood-excluding glycocalyx volume, but direct evidence for this association is lacking at the moment. Using intravital microscopic visualization of mouse cremaster muscle, we determined the effects of bradykinin (10(-5) M) and sodium nitroprusside (10(-6) M) on capillary tube haematocrit and glycocalyx barrier properties. In control C57Bl/6 mice (n = 10), tube haematocrit in capillaries (n = 71) increased (P < 0.05) from 8.7 +/- 0.3% during baseline to 21.2 +/- 1.2 and 22.2 +/- 0.9% during superfusion with bradykinin and nitroprusside, respectively. In parallel, the exclusion zone of FITC-labelled 70 kDa dextrans decreased (P < 0.05) from 0.37 +/- 0.01 microm during baseline to 0.17 +/- 0.01 microm with bradykinin and 0.15 +/- 0.01 microm with nitroprusside. Bradykinin and nitroprusside had no effect on dextran exclusion and tube haematocrit in capillaries (n = 55) of hyperlipidemic ApoE3-Leiden mice, which showed impaired exclusion of 70 kDa dextrans (0.05 +/- 0.02 microm; P < 0.05 versus C57Bl/6) and increased capillary tube haematocrit (23 +/- 0.8%; P < 0.05 versus C57Bl/6) under baseline conditions, indicating glycocalyx degradation. Our data show that vasodilator substances increase functionally perfused capillary volume and that this effect is associated with a reduction in glycocalyx exclusion of 70 kDa dextrans. Modulation of glycocalyx volume might represent a novel mechanism of perfusion control at the capillary level.
Bradykinin- and sodium nitroprusside-induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties.
阅读:3
作者:VanTeeffelen Jurgen W G E, Constantinescu Alina A, Brands Judith, Spaan Jos A E, Vink Hans
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2008 | 起止号: | 2008 Jul 1; 586(13):3207-18 |
| doi: | 10.1113/jphysiol.2008.152975 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
