The saccharification process is essential for bioethanol production from woody biomass including celluloses. Cold-adapted cellulase, which has sufficient activity at low temperature (<293 K), is capable of reducing heating costs during the saccharification process and is suitable for simultaneous saccharification and fermentation. Endo-1,4-β-glucanase from the earthworm Eisenia fetida (EF-EG2) belonging to glycoside hydrolase family 9 has been shown to have the highest activity at 313 K, and also retained a comparatively high activity at 283 K. The recombinant EF-EG2 was purified expressed in Pichia pastoris, and then grew needle-shaped crystals with dimensions of 0.02 à 0.02 à 1 mm. The crystals belonged to the space group P3221 with unit-cell parameters of a = b = 136 à , c = 55.0 à . The final model of EF-EG2, including 435 residues, two ions, seven crystallization reagents and 696 waters, was refined to a crystallographic R-factor of 14.7% (free R-factor of 16.8%) to 1.5 à resolution. The overall structure of EF-EG2 has an (α/α)6 barrel fold which contains a putative active-site cleft and a negatively charged surface. This structural information helps us understand the catalytic and cold adaptation mechanisms of EF-EG2.
Crystal structure of endo-1,4-β-glucanase from Eisenia fetida.
阅读:3
作者:Arimori Takao, Ito Akihiro, Nakazawa Masami, Ueda Mitsuhiro, Tamada Taro
| 期刊: | Journal of Synchrotron Radiation | 影响因子: | 3.000 |
| 时间: | 2013 | 起止号: | 2013 Nov;20(Pt 6):884-9 |
| doi: | 10.1107/S0909049513021110 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
