Microplastics of Broad Size Range Reduce Bacteriophage Activity in Aqueous Environments.

阅读:17
作者:Ochirbat Enkhlin, Zbonikowski Rafał, Folga Michał, Bonarowska Magdalena, Paczesny Jan
Microplastics, pervasive environmental contaminants, attract significant attention due to their detrimental effects across ecosystems. Reports show the presence of microplastics in water, soil, aqueous organisms, and even human tissues and blood. This study investigates the impact of microplastics on bacteriophages, i.e., viruses that play crucial roles in regulating microbial communities and maintaining ecological balance. Since bacteriophages lyse up to 40% of bacterial populations daily, their role in environmental stability is paramount. We demonstrate that microplastics can reduce the apparent number of active bacteria in aquatic environments. To explore the interaction between microplastics and bacteriophages, we examine the effects of various microplastic types (polystyrene, poly(vinyl chloride), polyethylene, and polyethylene terephthalate) and size ranges of particles on phages of varying morphologies (tailed T4, filamentous M13, and icosahedral MS2). Additionally, we assess the influence of bacterial debris, representing organic matter, on the heteroaggregation of microplastic particles and phages. Our findings reveal a significant decline of up to 99.99% in active phages, underscoring the profound effects of microplastics on phage dynamics. These results provide critical insights into the complex interactions between microplastics and phages, highlighting the need for urgent action to address microplastic pollution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。