Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration

膳食二十碳五烯酸可使海马 omega-3 和 6 多不饱和脂肪酸谱正常化,减弱神经胶质细胞活化,并调节由中枢白细胞介素-1β 给药引起的神经炎症啮齿动物模型中的 BDNF 功能

阅读:6
作者:Yilong Dong, Min Xu, Allan V Kalueff, Cai Song

Conclusion

Supplementation with EPA appear to have potential effects on improving glial over-activation, n3/n6 imbalance and BDNF down-regulation, which contribute to anti-inflammatory and may provide beneficial effects on inflammation-associated disease such as AD.

Methods

Male Long-Evans rats were fed either palm oil supplemented diet or EPA supplemented diet for 42 days. On day 36 of diet feeding, rats received an intracerebroventricular injection of IL-1β or saline for 7 days. The glial activation, the expression of amyloid precursor protein (APP), calcium-dependent phospholipase (cPL) A2, brain-derived neurotrophic factor (BDNF) and its receptor, and PUFA profile in the hippocampus were analyzed.

Purpose

Interleukin (IL)-1β can activate glial cells to trigger neuroinflammation and neurodegeneration. Lower omega (n)-3 polyunsaturated fatty acids (PUFAs) and lower n-3/n-6 PUFA ratios occur in the brain of patients with Alzheimer's disease (AD). We have previously reported that an n-3 PUFA, eicosapentaenoic acid (EPA), can improve memory and attenuate neurodegeneration-like changes in animal models of AD. However, whether and how EPA modulates glial cell activity and functions remains unclear. The aim of this study was to test the hypothesis that EPA may attenuate neuroinflammation by inhibiting microglial activation and microglia-produced proinflammatory cytokines, and by enhancing the expression of astrocytes-produced neurotrophins and their receptors.

Results

IL-1β elevated biomarkers of microglial CD11b and astrocyte GFAP expression, increased the expression of APP, tumor-necrosis factor (TNF)-α, but reduced BDNF and its receptor (TrKB). IL-1β also lowered n-3 EPA and docosapentaenoic acid concentrations but increased n-6 PUFAs and cPLA2 activity in the hippocampus. EPA supplement normalized the n-3 and n-6 PUFA profiles and cPLA2 levels, inhibited glial activation, reduced APP and TNF-α expression, as well as up-regulated BDNF and TrKB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。