Characterizing sliding and rolling contacts between single particles.

阅读:10
作者:Scherrer Simon, Ramakrishna Shivaprakash N, Niggel Vincent, Hsu Chiao-Peng, Style Robert W, Spencer Nicholas D, Isa Lucio
Contacts between particles in dense, sheared suspensions are believed to underpin much of their rheology. Roughness and adhesion are known to constrain the relative motion of particles, and thus globally affect the shear response, but an experimental description of how they microscopically influence the transmission of forces and relative displacements within contacts is lacking. Here, we show that an innovative colloidal-probe atomic force microscopy technique allows the simultaneous measurement of normal and tangential forces exchanged between tailored surfaces and microparticles while tracking their relative sliding and rolling, unlocking the direct measurement of coefficients of rolling friction, as well as of sliding friction. We demonstrate that, in the presence of sufficient traction, particles spontaneously roll, reducing dissipation and promoting longer-lasting contacts. Conversely, when rolling is prevented, friction is greatly enhanced for rough and adhesive surfaces, while smooth particles coated by polymer brushes maintain well-lubricated contacts. We find that surface roughness induces rolling due to load-dependent asperity interlocking, leading to large off-axis particle rotations. In contrast, smooth, adhesive surfaces promote rolling along the principal axis of motion. Our results offer direct values of friction coefficients for numerical studies and an interpretation of the onset of discontinuous shear thickening based on them, opening up ways to tailor rheology via contact engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。