The development of effective materials for neural tissue repair remains a major challenge in regenerative medicine. In this study, we present a novel MXene-reinforced composite cryogel scaffold designed for neural tissue regeneration. MXenes, a class of two-dimensional materials with high conductivity and biocompatibility, were integrated into a polyvinyl alcohol (PVA) matrix via cryopolymerization to form a macroporous, mechanically stable scaffold. The morphology, mechanical properties, and swelling behavior of the cryogel with different MXene contents have been assessed. The effects of MXene on the viability/proliferation and differentiation of neural cells (PC-12) cultured in the composite cryogel were elucidated. The MXene/PVA cryogel demonstrated excellent cell-supporting potential, with MXene not only showing no toxicity but also promoting the proliferation of cultured PC-12. Additionally, MXene induced a neuritogenesis-like process in the cells as evidenced by morphological changes and the enhanced expression of the neural marker β-III-tubulin. The neuroprotective properties of the MXene component were revealed by the alleviation of oxidative stress and reduction of intracellular ROS levels. These findings highlight the potential of MXene-embedded PVA cryogel as a promising material that can be further used in conjunction with electrostimulation therapy for advancing strategies in neural tissue engineering.
MXene-Reinforced Composite Cryogel Scaffold for Neural Tissue Repair.
阅读:12
作者:Zoughaib Mohamed, Avdokushina Svetlana, Savina Irina N
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Jan 22; 30(3):479 |
| doi: | 10.3390/molecules30030479 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
