The Hosmer-Lemeshow (HL) test is a commonly used global goodness-of-fit (GOF) test that assesses the quality of the overall fit of a logistic regression model. In this paper, we give results from simulations showing that the type I error rate (and hence power) of the HL test decreases as model complexity grows, provided that the sample size remains fixed and binary replicates (multiple Bernoulli trials) are present in the data. We demonstrate that a generalized version of the HL test (GHL) presented in previous work can offer some protection against this power loss. These results are also supported by application of both the HL and GHL test to a real-life data set. We conclude with a brief discussion explaining the behavior of the HL test, along with some guidance on how to choose between the two tests. In particular, we suggest the GHL test to be used when there are binary replicates or clusters in the covariate space, provided that the sample size is sufficiently large.
Improving the Hosmer-Lemeshow goodness-of-fit test in large models with replicated Bernoulli trials.
阅读:5
作者:Surjanovic Nikola, Loughin Thomas M
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2023 Oct 27; 51(7):1399-1411 |
| doi: | 10.1080/02664763.2023.2272223 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
