Microsatellites are abundant in vertebrate genomes, but their sequence representation and length distributions vary greatly within each family of repeats (e.g., tetranucleotides). Biophysical studies of 82 synthetic single-stranded oligonucleotides comprising all tetra- and trinucleotide repeats revealed an inverse correlation between the stability of folded-back hairpin and quadruplex structures and the sequence representation for repeats > or =30 bp in length in nine vertebrate genomes. Alternatively, the predicted energies of base-stacking interactions correlated directly with the longest length distributions in vertebrate genomes. Genome-wide analyses indicated that unstable sequences, such as CAG:CTG and CCG:CGG, were over-represented in coding regions and that micro/minisatellites were recruited in genes involved in transcription and signaling pathways, particularly in the nervous system. Microsatellite instability (MSI) is a hallmark of cancer, and length polymorphism within genes can confer susceptibility to inherited disease. Sequences that manifest the highest MSI values also displayed the strongest base-stacking interactions; analyses of 62 tri- and tetranucleotide repeat-containing genes associated with human genetic disease revealed enrichments similar to those noted for micro/minisatellite-containing genes. We conclude that DNA structure and base-stacking determined the number and length distributions of microsatellite repeats in vertebrate genomes over evolutionary time and that micro/minisatellites have been recruited to participate in both gene and protein function.
Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties.
阅读:3
作者:Bacolla Albino, Larson Jacquelynn E, Collins Jack R, Li Jian, Milosavljevic Aleksandar, Stenson Peter D, Cooper David N, Wells Robert D
| 期刊: | Genome Research | 影响因子: | 5.500 |
| 时间: | 2008 | 起止号: | 2008 Oct;18(10):1545-53 |
| doi: | 10.1101/gr.078303.108 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
