Machine learning techniques for causal effect estimation can enhance the reliability of epidemiologic analyses, reducing their dependence on correct model specifications. However, the stochastic nature of many machine learning algorithms implies that the results derived from such approaches may be influenced by the random seed that is set before model fitting. In this work, we highlight the substantial influence of random seeds on a popular approach for machine learning-based causal effect estimation, namely doubly robust estimators. We illustrate that varying seeds can yield divergent scientific interpretations of doubly robust estimates produced from the same dataset. We propose techniques for stabilizing results across random seeds and, through an extensive simulation study, demonstrate that these techniques effectively neutralize seed-related variability without compromising the statistical efficiency of the estimators. Based on these findings, we offer practical guidelines to minimize the influence of random seeds in real-world applications, and we encourage researchers to explore the variability due to random seeds when implementing any method that involves random steps.
Don't Let Your Analysis Go to Seed: On the Impact of Random Seed on Machine Learning-based Causal Inference.
阅读:4
作者:Schader Lindsey, Song Weishan, Kempker Russell, Benkeser David
| 期刊: | Epidemiology | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Nov 1; 35(6):764-778 |
| doi: | 10.1097/EDE.0000000000001782 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
