Glucocorticoids Induce Cardiac Fibrosis via Mineralocorticoid Receptor in Oxidative Stress: Contribution of Elongation Factor Eleven-Nineteen Lysine-Rich Leukemia (ELL)

糖皮质激素在氧化应激中通过盐皮质激素受体诱导心脏纤维化:延长因子 11-19 富含赖氨酸的白血病 (ELL) 的贡献

阅读:7
作者:Yosuke Omori, Toshiaki Mano, Tomohito Ohtani, Yasushi Sakata, Yasuharu Takeda, Shunsuke Tamaki, Yasumasa Tsukamoto, Takeshi Miwa, Kazuhiro Yamamoto, Issei Komuro

Background

Cardiac fibrosis is considered to be a crucial factor in the development of heart failure. Blockade of the mineralocorticoid receptor (MR) attenuated cardiac fibrosis and improved the prognosis of patients with chronic heart failure but the ligand for MR and the regulatory mechanism of MR pathway in the diseased heart are unclear. Here, we investigated whether glucocorticoids can promote cardiac fibrosis through MR in oxidative stress and the involvement of elongation factor eleven-nineteen lysine-rich leukemia (ELL), a co-activator of MR, in this pathway.

Conclusion

Glucocorticoids can promote cardiac fibrosis via MR in oxidative stress, and oxidative stress modulates MR response to glucocorticoids through the interaction with ELL. Preventing cardiac fibrosis by modulating glucocorticoid-MR-ELL pathway may become a new therapeutic strategy for heart failure.

Results

The MR antagonist eplerenone attenuated corticosterone-induced collagen synthesis assessed by [(3)H]proline incorporation in rat neonatal cultured cardiac fibroblasts in the presence of H2O2, as an oxidative stress but not in the absence of H2O2. H2O2 increased the ELL expression levels and MR-bound ELL. ELL expression levels and MR-bound ELL were also increased in the left ventricle of heart failure model rats with significant fibrosis and enhanced oxidative stress. Eplerenone did not attenuate corticosterone-induced increase of [(3)H]proline incorporation in the presence of H2O2 after knockdown of ELL expression using small interfering RNA in cardiac fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。