Longitudinal growth of the Saccharina kelp embryo depends on actin filaments that control the formation of a corset-like structure composed of alginate.

阅读:3
作者:Boscq Samuel, Theodorou Ioannis, Milstein Roman, Le Bail Aude, Chenivesse Sabine, Billoud Bernard, Charrier Bénédicte
The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II. This pattern depends on the presence of cortical actin filaments. In contrast, within the embryo lamina, the alginate composition of the walls newly formed by cytokinesis is not affected by the depolymerisation of actin filaments. Thus, in addition to revealing the existence of a mannuronate-rich alginate corset-like structure that may restrict the enlargement of the zygote and the embryo, thereby promoting the formation of the apico-basal growth axis, we demonstrate stage- and cytoskeleton-dependent differences in cell wall deposition in Saccharina embryos.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。