Selecting between competing Structural Equation Models (SEMs) is a common problem. Often selection is based on the chi square test statistic or other fit indices. In other areas of statistical research Bayesian information criteria are commonly used, but they are less frequently used with SEMs compared to other fit indices. This article examines several new and old Information Criteria (IC) that approximate Bayes Factors. We compare these IC measures to common fit indices in a simulation that includes the true and false models. In moderate to large samples, the IC measures outperform the fit indices. In a second simulation we only consider the IC measures and do not include the true model. In moderate to large samples the IC measures favor approximate models that only differ from the true model by having extra parameters. Overall, SPBIC, a new IC measure, performs well relative to the other IC measures.
BIC and Alternative Bayesian Information Criteria in the Selection of Structural Equation Models.
阅读:5
作者:Bollen Kenneth A, Harden Jeffrey J, Ray Surajit, Zavisca Jane
| 期刊: | Structural Equation Modeling-A Multidisciplinary Journal | 影响因子: | 3.200 |
| 时间: | 2014 | 起止号: | 2014;21(1):1-19 |
| doi: | 10.1080/10705511.2014.856691 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
