Paper packaging materials are widely used as sustainable green materials in food packaging. The production or processing of paper materials is conducted in an environment that contains organic chlorides; therefore, potential food safety issues exist. In this study, the adsorption behavior of organic chlorides on paper materials was investigated. Chloropropanol, which has been extensively studied in the field of food safety, was employed as the research object. We studied the adsorption mechanism of chloropropanol on a crystalline nanocellulose (CNC) model. The results demonstrated that physical adsorption was the prevailing process, and the intermolecular hydrogen bonds acted as the driving force for adsorption. The adsorption effect assumed greatest significance under neutral and weakly alkaline conditions. A good linear relationship between the amount of chloropropanol adsorbed and the amount of CNC used was discovered. Thus, the findings of this study are crucial in monitoring the safety of products in systems containing chloropropanol and other chlorinated organic substances. This is particularly critical in the production of food-grade paper packaging materials.
Adsorption Mechanism of Chloropropanol by Crystalline Nanocellulose.
阅读:4
作者:Zhao Jinwei, Gong Zhiqiang, Chen Can, Liang Chen, Huang Lin, Huang Meijiao, Qin Chengrong, Wang Shuangfei
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Apr 25; 14(9):1746 |
| doi: | 10.3390/polym14091746 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
