We propose methods to estimate sufficient reductions in matrix-valued predictors for regression or classification. We assume that the first moment of the predictor matrix given the response can be decomposed into a row and column component via a Kronecker product structure. We obtain least squares and maximum likelihood estimates of the sufficient reductions in the matrix predictors, derive statistical properties of the resulting estimates and present fast computational algorithms with assured convergence. The performance of the proposed approaches in regression and classification is compared in simulations.We illustrate the methods on two examples, using longitudinally measured serum biomarker and neuroimaging data.
Least squares and maximum likelihood estimation of sufficient reductions in regressions with matrix-valued predictors.
阅读:9
作者:Pfeiffer Ruth M, Kapla Daniel B, Bura Efstathia
| 期刊: | International Journal of Data Science and Analytics | 影响因子: | 2.800 |
| 时间: | 2021 | 起止号: | 2021;11(1):11-26 |
| doi: | 10.1007/s41060-020-00228-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
