Avoiding the Kauzmann Paradox via Interface-Driven Divergence in States.

阅读:12
作者:Martin Andrew, Green Jason R, Thuo Martin
Kauzmann paradox (KP) suggests that deeply supercooled liquids can have a lower entropy than the corresponding crystalline solids. While this entropy catastrophe has been thoroughly studied via equilibrium thermodynamics, the solidification process occurs far-from-equilibrium. By analyzing this process experimentally and theoretically, we show that surface chemical speciation (oxidation-driven generation and self-organization of different species of the alloy components) in core-shell particles (CSPs) can perturb the entropy production to an extent that a continuum equilibrium phase transition is not possible. Speciation of the surface causes divergence of associated stress vectors that generate nonequilibrium fluxes and frustrates homogeneous nucleation hence deep undercooling. The asymmetry of the speciation-derived surface tensor skews the minimum entropy production criterion. We analyze a set of nonequilibrium models, one showing and one averting the entropy catastrophe. Applying thermodynamic speed limits to these models, we show that the KP takes another form. Deviations from the speed limit diverge the configurational entropy of the glass, but adding an interfacial state avoids the entropy catastrophe with significantly large supercooling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。