Predicting the Performance of Functional Materials Composed of Polymeric Multicomponent Systems Using Artificial Intelligence-Formulations of Cleansing Foams as an Example.

阅读:7
作者:Hamaguchi Masugu, Miwake Hideki, Nakatake Ryoichi, Arai Noriyoshi
Cleansing foam is a common multicomponent polymeric functional material. It contains ingredients in innumerable combinations, which makes formulation optimization challenging. In this study, we used artificial intelligence (AI) with machine learning to develop a cleansing capability prediction system that considers the effects of self-assembled structures and chemical properties of ingredients. Over 500 cleansing foam samples were prepared and tested. Molecular descriptors and Hansen solubility index were used to estimate the cleansing capabilities of each formulation set. We used five machine-learning models to predict the cleansing capability. In addition, we employed an in silico formulation by generating virtual formulations and predicting their cleansing capabilities using an established AI model. The achieved accuracy was R(2) = 0.770. Our observations revealed that mixtures of cosmetic ingredients exhibit complex interactions, resulting in nonlinear behavior, which adds to the complexity of predicting cleansing performance. Nevertheless, accurate chemical property descriptors, along with the aid of in silico formulations, enabled the identification of potential ingredients. We anticipate that our system will efficiently predict the chemical properties of polymer-containing blends.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。