Non-parametric generalised newsvendor model.

阅读:7
作者:Ghosh Soham, Mukhoti Sujay
In the present paper we generalise the classical newsvendor problem for critical perishable commodities having more severe costs than its linear alternative. Piece wise polynomial cost functions are introduced to accommodate the excess severity. Stochastic demand is assumed to follow a completely unknown probability distribution. Non parametric estimator of the optimal order quantity has been developed from an estimating equation using a random sample. Strong consistency of the estimator is proved for unique optimal order quantity and the result is extended for multiple solutions. Simulation results indicate that non parametric estimator is efficient in terms of mean square error. Real life application of the proposed non-parametric estimator has been demonstrated with Avocado demand in the United States of America and Covid-19 test kit demand during second wave of SARS-COV2 pandemic across 86 countries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。