Antarctic sea ice extent has seen a slight increase over recent decades, yet since 2016, it has undergone a sharp decline, reaching record lows. While the precise impact of anthropogenic forcing remains uncertain, natural fluctuations have been shown to be important for this variability. Our study employs a series of coupled model experiments, revealing that with constant anthropogenic forcing, the primary driver of interannual sea ice variability lies in deep convection within the Southern Ocean, although it is model dependent. However, as anthropogenic forcing increases, the influence of deep convection weakens, and the Southern Annular Mode, an atmospheric intrinsic variability, plays a more significant role in the sea ice fluctuations owing to the shift from a zonal wavenumber-three pattern observed in the historical period. These model results indicate that surface air-sea interaction will play a more prominent role in Antarctic sea ice variability in the future.
Role of anthropogenic forcing in Antarctic sea ice variability simulated in climate models.
阅读:3
作者:Morioka Yushi, Zhang Liping, Cooke William, Nonaka Masami, Behera Swadhin K, Manabe Syukuro
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2024 | 起止号: | 2024 Dec 20; 15(1):10511 |
| doi: | 10.1038/s41467-024-54485-7 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
