Oxide nanoparticles exhibit unique features such as high surface area, enhanced catalytic activity, and tunable optical and electrical properties, making them valuable to various industry applications as well as for the development of new research projects. Nowadays, ZrO(2) nanoparticles are widely used as catalysts and precursors in ceramic technology. Hydrothermal synthesis with metal salts is one of the most common methods for producing stable tetragonal-phase zirconium dioxide nanoparticles. However, hydrothermal synthesis requires relatively high process temperatures (160-200 °C) and the use of advanced heat-resistant autoclaves capable of maintaining high pressure. This paper investigates how different precursors (ZrOClâ·8HâO and ZrO(NOâ)â·2HâO) and synthesis temperatures (110-160 °C) affect the phase composition, optical properties, size, and shape of ZrOâ nanoparticles produced by hydrothermal synthesis without calcination. In addition, the effect of temperature exposure in the range of 100-1000 °C on the phase stability of the synthesized nanoparticles was studied. X-ray diffraction and Raman spectroscopy techniques were used to determine the structure and phase composition, while the optical properties were examined through the analysis of transmission and absorption spectra in the visible and UV ranges. It was found that the obtained particles at synthesis temperatures of 110-130 °C have predominantly cubic c-ZrO(2) phase, which changes to monoclinic phase when heated above 500 °C. Analysis of visible and UV spectroscopy data reveals that the experimental samples have pronounced absorption in the middle UV range (200-260 nm) and have an energy band gap E(g) varying from 4.8 to 5.1 eV. The hydrothermal powders synthesized in this study can be used as absorbers in the mid-UV range and as reinforcing additives in the preparation of technical ceramics.
Study of morphology, phase composition, optical properties, and thermal stability of hydrothermal zirconium dioxide synthesized at low temperatures.
阅读:4
作者:Garanin Yuriy, Shakirzyanov Rafael, Borgekov Daryn, Kozlovskiy Artem, Volodina Natalia, Shlimas Dmitriy, Zdorovets Maxim
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 26; 14(1):29398 |
| doi: | 10.1038/s41598-024-80399-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
