Utilizing ANN for Predicting the Cauchy Stress and Lateral Stretch of Random Elastomeric Foams under Uniaxial Loading.

阅读:3
作者:Liu Zhentao, Wang Chaoyang, Lai Zhenyu, Guo Zikang, Chen Liang, Zhang Kai, Yi Yong
As a result of their cell structures, elastomeric foams exhibit high compressibility and are frequently used as buffer cushions in energy absorption. Foam pads between two surfaces typically withstand uniaxial loads. In this paper, we considered the effects of porosity and cell size on the mechanical behavior of random elastomeric foams, and proposed a constitutive model based on an artificial neural network (ANN). Uniform cell size distribution was used to represent monodisperse foam. The constitutive relationship between Cauchy stress and the four input variables of axial stretch λ(U), lateral stretch λ(L), porosity φ, and cell size θ was given by con-ANN. The mechanical responses of 500 different foam structures (20% < φ < 60%, 0.1 mm < θ < 0.5 mm) under compression and tension loads (0.4 < λ(U) < 3) were simulated, and a dataset containing 100,000 samples was constructed. We also introduced a pre-ANN to predict lateral stretch to address the issue of missing lateral strain data in practical applications. By combining physical experience, we chose appropriate input forms and activation functions to improve ANN's extrapolation capability. The results showed that pre-ANN and con-ANN could provide reasonable predictions for λ(U) outside the dataset. We can obtain accurate lateral stretch and axial stress predictions from two ANNs. The porosity affects the stress and λ(L), while the cell size only affects the stress during foam compression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。