Molecular characterization of human osteoblast-derived extracellular vesicle mRNA using next-generation sequencing.

阅读:4
作者:Morhayim Jess, van de Peppel Jeroen, Dudakovic Amel, Chiba Hideki, van Wijnen Andre J, van Leeuwen Johannes P
Extracellular vesicles (EVs) are membrane-bound intercellular communication vehicles that transport proteins, lipids and nucleic acids with regulatory capacity between cells. RNA profiling using microarrays and sequencing technologies has revolutionized the discovery of EV-RNA content, which is crucial to understand the molecular mechanism of EV function. Recent studies have indicated that EVs are enriched with specific RNAs compared to the originating cells suggestive of an active sorting mechanism. Here, we present the comparative transcriptome analysis of human osteoblasts and their corresponding EVs using next-generation sequencing. We demonstrate that osteoblast-EVs are specifically depleted of cellular mRNAs that encode proteins involved in basic cellular activities, such as cytoskeletal functions, cell survival and apoptosis. In contrast, EVs are significantly enriched with 254 mRNAs that are associated with protein translation and RNA processing. Moreover, mRNAs enriched in EVs encode proteins important for communication with the neighboring cells, in particular with osteoclasts, adipocytes and hematopoietic stem cells. These findings provide the foundation for understanding the molecular mechanism and function of EV-mediated interactions between osteoblasts and the surrounding bone microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。