Set-based genetic association and interaction tests for survival outcomes based on weighted V statistics.

阅读:5
作者:Li Chenxi, Wu Di, Lu Qing
With advancements in high-throughout technologies, studies have been conducted to investigate the role of massive genetic variants in human diseases. While set-based tests have been developed for binary and continuous disease outcomes, there are few computationally efficient set-based tests available for time-to-event outcomes. To facilitate the genetic association and interaction analyses of time-to-event outcomes, We develop a suite of multivariant tests based on weighted V statistics with or without considering potential genetic heterogeneity. In addition to the computation efficiency and nice asymptotic properties, all the new tests can deal with left truncation and competing risks in the survival data, and adjust for covariates. Simulation studies show that the new tests run faster, are more accurate in small samples, and account for confounding effect better than the existing multivariant survival tests. When the genetic effect is heterogeneous across individuals/subpopulations, the association test considering genetic heterogeneity is more powerful than the existing tests that do not account for genetic heterogeneity. Using the new methods, we perform a genome-wide association analysis of the genotype and age-to-Alzheimer's data from the Rush Memory and Aging Project and the Religious Orders Study. The analysis identifies two genes, APOE and APOC1, associated with age to Alzheimer's disease onset.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。