Functional dissection of the cytoplasmic subregions of the interleukin-5 receptor alpha chain in growth and immunoglobulin G1 switch recombination of B cells.

阅读:2
作者:Moon B G, Yoshida T, Shiiba M, Nakao K, Katsuki M, Takaki S, Takatsu K
The interleukin-5 receptor alpha chain (IL-5Ralpha) is known to regulate the development and function of B cells and eosinophils. Although the functions of IL-5Ralpha cytoplasmic domain subregions have been studied extensively using cultured cell lines, this approach has limitations when studying the functions of distinct primary B-cell subpopulations and their responsiveness to IL-5. In the present study, we generated mice on an IL-5Ralpha null background, each expressing a mutant form of an IL-5Ralpha transgene ligated to a mu enhancer and VH promoter, either lacking the cytoplasmic DC3 region or substituting two proline residues for alanine (ApvA) in the membrane-proximal ppvp motif of the cytoplasmic domain. The ppvp motif, which mediates activation of JAK2/STAT5 and Btk, also contributes to c-fos, c-jun and c-myc expression. IL-5Ralpha null mutant mice showed impaired B-1-cell development, reduced serum immunoglobulin G3 (IgG3) and IgM, no IL-5-induced enhancement of B-cell proliferation and IL-5-induced switch recombination from the mu gene to gamma1 gene; these were not recovered following the expression of the ApvA mutant. In contrast, absence of the DC3 region affected the IL-5-induced switch recombination from the mu to the gamma1 gene and B-1-cell development, while IL-5-induced proliferation and IgM production were at levels similar to those of B cells expressing wild-type IL-5Ralpha transgene. The results clearly indicated that the ppvp motif and the DC3 region of IL-5Ralpha played distinct roles in B-cell proliferation and differentiation. Thus, this present approach offers new insights into the functions of the cytoplasmic subregions of IL-5Ralpha, in particular its carboxy-terminal region.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。